Saturday, February 15, 2020

Managing People and Organisations Essay Example | Topics and Well Written Essays - 3250 words

Managing People and Organisations - Essay Example A corporate ethics program comprises a code of ethics, education and training of employees for ethics, a reporting and audit system, and an investigation system. In different corporations, the managers emphasize upon different components to different extent. In a vast majority of cases, the corporate ethics programs are designed and control by the senior management in a corporation. According to alpha.fdu.edu (n.d.), 84 per cent of the general counsel, 77 per cent CEOs, and 75 per cent senior human resources executives write the codes of ethics, whereas 58 per cent of the chairmen write the codes of ethics. This speaks of the magnitude of control exercised by the executives on the codes of ethics whereas employees are just required to comply with them as part of their job. A demand of blind faith upon the corporation on the part of the employees clearly reflects from these statistics. Although the conflicts between these roles are not experienced on the daily basis, yet the employees hope to find some clash or even the simplest decisions become too difficult to take in this world where the goals and interests of the corporations and the stakeholders are so diverse and variant, that conflicts are simply inevitable. In spite of the governmental regulations and legal frameworks within which the corporations have to remain and do the business, we cannot rely on corporations to be ethical and responsible. Ethical decision making processes have reportedly been found to be important always throughout the past many years. â€Å"The language of ethics and responsibility seems to be here to stay, and is claiming a degree of centrality as the necessary conscience of managerial capitalism† (Parker, 2002, p. 92). One of the fundamental reasons why we cannot expect corporations to be ethical and responsible is that there is no definitive answer to every ethical question. In order to find the right answer to every ethical question, we need to have the right tools. The bad aspect about this bleak situation is that workforce is left to deal with the consequences when ethical requirements are not fulfilled. Employers also get affected in myriad ways like not being able to achieve maximum cooperation of the employees raises much concern for many corporations when it comes to maintaining the productivity level. Employees find themselves unable to cooperate with employers on more levels when many ethical requirements get crushed under the employers’ feet. Now the conditions are much better but such a situation of less cooperation due to lack of ethical consideration particularly developed abruptly when economic recession spread globally. Organizations began to fire even the responsible staff members due to not being able to ensure reasonable salaries to every employee. Lay offs became very common and ethical rights of employees began getting severely violated too. This shows that corporations cannot be always trusted to carry out all their funct ions ethically and responsibly since nothing can be perfect and certain sacrifices have to be made by the employees within a workplace in favor of demanding employers who rush after meeting certain goals in this age of excessive competitiveness. Nevertheless, lack

Sunday, February 2, 2020

Pre Calculus Mod 5 Assignment Example | Topics and Well Written Essays - 1250 words

Pre Calculus Mod 5 - Assignment Example f(X) =ex3 f '(x) = 3x2 ex3 d. f(X) =2X2 e (1-X2) r (x) = 2x2, r' (x) = 4x s(x) = e (1-X2) s' (x) = -2 e (1-X2) Applying product rule, f '(x) = 2X2-2 e (1-X2) + 4x e (1-X2) = -8x2 e (1-X2) + 4x e (1-X2) = (4x -8x2) e (1-X2) e. f(X) =5X e (12-2x) Let r(x) = 5x, r' (x) = 5 and s(x) = e (12-2x), s' (x) = -2 e (12-2x) f '(x) = 5x (-2 e (12-2x)) + 5 e (12-2x) f '(x) = -10x e (12-2x) + 5 e (12-2x) = (-10 + 5) e (12-2x) f. f(X) =100e(x8 + x4) f '(x) = 8x7 + 4x3e(x8 + x4) g. f(X) = e (200X-X2 + x^100) f '(x) = 200 – 2x + 100x^99 e (200X-X2 + x^100) 2. Find the derivatives for the following functions: a. f(X) = ln250X b. f(X) = ln (20X-20) c. f(X) = ln (1- X2) d. f(X) = ln (5X + X-1) e. f(X) = Xln (12- 2X) f. f(X) = 2Xln(X3 + X4) g. f(X) = ln (200X - X2 + X100) Solutions The derivative of the function y = ln x is obtained by d/dx (ln x) = 1/x. d/dx logex = 1/x, suppose y = ln x, then dy/dx = 1/x a. f(X) = ln250X log ab = log a + log b Therefore, the equation can be rewritten as f (x) = ln 250 + ln x d/dx ln 250 = 0 (derivative of a constant) d/dx (ln x) = 1/x Hence dy/dx = 1/x. b. f(X) = ln(20X-20) If y = ln u and u is some function of x, then dy/dx = u'/u If y = ln f(x), then dy/dx = f ' (x)/ f(x) Let u = 20x – 20 u' = 20 dy/dx = 1. u'/u = 20/(20x – 20) c. f(X) = ln (1- X2) Let u = (1- X2) Then u' = -2x dy/dx = 1. ... ln (12-2x) f ' (x) = 2x/ (12 – 2x) + ln (12-2x). f. f(X) = 2X ln(X3 + X4) Let r(x) = 2x, therefore, r' (x) = 2 Similarly, if s(x) = ln (X3 + X4), s'(x) = (3x2 + 4x3)/ (X3 + X4) Therefore, f ' (x) = 2x ((3x2 + 4x3)/ (X3 + X4)) + 2 ln (X3 + X4) g. f(X) = ln(200X - X2 + X100) u = ln (200X - X2 + X100) u' = 200 -2x + 100x99 f ' (x) = dy/dx = u'/u = 200 -2x + 100x99/ (200X - X2 + X100) 3. Find the indefinite integrals for the following functions a. f(X) = e6X = ? e6X dx = 1/6e6X + C b. f(X) = e (5X-5) = 5/2 x2-5x e (5X-5) c. f(X) = 5eX = ? 5eX dx = 5 ? eX dx = 5eX + C d. f(X) = 1/ (1 + X) = ln ?1 + x? + C e. f(X) = 5/X = 5 integral [1/x] dx = 5 ln ?x?+ C 4. Find the definite integrals for the following functions a. f(X) = e2X over the interval [2, 4] =Integral 42 [ e2x ] dx = [ 1/2 e2 ( 4) + C ] - [ 1/2 e2 ( 2 ) + C ] = 1/2 [ e8 - e4 ] b. f(X) = 2eX over the interval [0, 2] =Integral 20 [2eX] dx = [e2 + C] - [e0 + C] = e2 – e0 d. f(X) = 2/ (2 + X) over the interval [2, 5] Le t u = 2 + x, when x = 2, u = 2 + 2 = 4 and when x = 5, u = 2 + 5 = 7 = ln [?2 + x?] 52 = ln (7) – ln (2) e. f(X) = 10/X over the interval [3, 10] =dx = 10 integral [ 10 / x ] dx = 10 [ ln | x | ] + C, so Integral103 [ 10/ x ] dx = [ 10 ln | 10 | + C ] - [ 10 ln | 3 | + C ] = 10 ln 10 – 10 ln3 = 10 [ln10 – ln 3] Part2: Application of Calculus in Business Decision-Making Calculus is extensively used in making business decisions, which are critical for the success and survival of every business enterprise. Derivatives have wide applications in the business world. Derivatives are used to measure rate of change of a function in relation to the changes in variables (inputs) under focus. At some given value of an input, the derivative tells us the linear estimate of the function, which is close to